The effectiveness of liraglutide across the type 2 diabetes continuum has been demonstrated in the LEAD phase 3 trial programme; however, the effect of baseline diabetes duration is unclear. This post-hoc, pooled analysis of 26/28 week data from seven trials (LEAD-1–6 and Lira-DPP-4i) explored impact of diabetes duration on changes in HbA1c and body weight from baseline with liraglutide 1.8 mg (n=1581), liraglutide 1.2 mg (n=1117) and placebo (n=524). Linear regression was used to determine change in HbA1c and body weight versus diabetes duration. The model used included baseline value, diabetes duration and age as continuous covariates. Previous treatment and country were categorical covariates. Diabetes duration ranged from 1 to 40 years across the treatment arms; for pooled groups the mean duration was ~8 years. Pooled data revealed a non-significant slightly greater reduction in HbA1c with shorter diabetes duration with placebo [-0.003% HbA1c/year diabetes duration; 95% CI -0.01, 0.02] and liraglutide 1.8 mg [-0.007% HbA1c/year diabetes duration; 95% CI -0.02, -0.002]. In patients treated with liraglutide 1.2 mg, statistical significance was achieved in the pooled group (p<0.05), but this only equated to -0.02% HbA1c/year shorter diabetes duration [95% CI 0.006, 0.03] and was not deemed clinically meaningful. No significant trend was observed between body weight and diabetes duration in any pooled treatment arm. Diabetes duration appears to have a negligible impact on the proven effectiveness of liraglutide to reduce HbA1c and body weight, thus suggesting that liraglutide is equally effective across different stages of type 2 diabetes.